Rational Hausdorff divisors: A new approach to the approximate parametrization of curves
نویسندگان
چکیده
In this paper we introduce the notion of rational Hausdorff divisor, we analyze the dimension and irreducibility of its associated linear system of curves, and we prove that all irreducible real curves belonging to the linear system are rational and are at finite Hausdorff distance among them. As a consequence, we provide a projective linear subspace where all (irreducible) elements are solutions to the approximate parametrization problem for a given algebraic plane curve. Furthermore, we identify the linear system with a plane curve that is shown to be rational and we develop algorithms to parametrize it analyzing its fields of parametrization. Therefore, we present a generic answer to the approximate parametrization problem. In addition, we introduce the notion of Hausdorff curve, and we prove that every irreducible Hausdorff curve can always be parametrized with a generic rational parametrization having coefficients depending on as many parameters as the degree of the input curve.
منابع مشابه
Dimension and natural parametrization for SLE curves
Some possible definitions for the natural parametrization of SLE paths are proposed in terms of various limits. One of the definitions is used to give a new proof that the Hausdorff dimension of SLEκ paths is 1 + κ 8 for κ < 8.
متن کاملAlgorithms for Rational Real Algebraic Curves
In this paper, we study fundamental properties of real curves, especially of rational real curves, and we derive several algorithms to decide the reality and rationality of curves in the complex plane. Furthermore, if the curve is real and rational, we determine a real parametrization. More precisely, we present a reality test algorithm for plane curves, and three different types of real parame...
متن کاملThe Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملIdentifying and approximating monotonous segments of algebraic curves using support function representation
Algorithms describing the topology of real algebraic curves search primarily the singular points and they are usually based on algebraic techniques applied directly to the curve equation. We adopt a different approach, which is primarily based on the identification and approximation of smooth monotonous curve segments, which can in certain cases cross the singularities of the curve. We use not ...
متن کاملLength Estimation of Rational Bézier Curves and Application to CAD Parametrization
We want to estimate the chord length Λ of a given rational Bézier curve efficiently. Since rational Bézier are nonlinear function, it is generally impossible to evaluate its length exactly. We approximate the length by using subdivision and we investigate the accuracy of the approximation Λn. In order to improve the efficiency, we use adaptivity with some length estimator. Additionally, we will...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 263 شماره
صفحات -
تاریخ انتشار 2014